The?rate of reaction?refers to the change in the amount or concentration of a reactant or product per unit time and can be found by:
Measuring the?decrease in the concentration of a reactant?OR
Measuring the?increase in the concentration of a product?over?time
The units of rate of reaction are mol dm-3?s-1
Rate equation
The?thermal decomposition?of calcium carbonate (CaCO3) will be used as an example to study the rate of reaction
CaCO3?(s) → CaO (s) + CO2?(g)
The rate of reaction at different concentrations of CaCO3?is measured and tabulated
Rate of reactions table
A?directly proportional?relationship between the?rate?of the reaction and?concentration?of CaCO3?is observed when a graph is plotted
Rate of thermal decomposition of CaCO3?over the concentration of CaCO3
The rate of reaction for the thermal decomposition of CaCO3?can also be written as:
Rate of reaction =?k?x [CaCO3]
The?proportionality constant?k?is the gradient of the graph and is also called the?rate constant
The?rate equation?is the overall expression for a particular reaction without the ‘x’ sign
Rate of reaction =?k?[CaCO3]
Rate equations can only be determined?experimentally?and cannot be found from the?stoichiometric equation
Rate of reaction =?k?[A]m?[B]n
[A] and [B] = concentrations of reactants
m?and?n?= orders of the reaction
For example, the?rate equation?for the formation of nitrogen gas (N2) from nitrogen oxide (NO) and hydrogen (H2) is?rate =?k?[NO]2?[H2]
2NO (g) + 2H2?(g) → N2?(g) + 2H2O (g)
rate =?k?[NO]2?[H2]
As mentioned before, the rate equation of the reaction above cannot be deduced from the stoichiometric equation but can only?experimentally?be determined by:
Changing the concentration of NO and determining how it affects the rate while keeping [H2] constant
This shows that the rate is?proportional to?the?square?of [NO]
Rate =?k1?[NO]2
Then, changing the [H2] and determining how it affects the rate while keeping [NO] constant
This shows that the rate is?proportional?to [H2]
Rate =?k2?[H2]
Combining the two equations gives the?overall rate equation?(where?k?=?k1?+ k2)
Rate =?k?[NO]2?[H2]
Order of reaction
The?order of reaction?shows how the concentration of a reactant affects the rate of reaction
It is the power to which the concentration of that reactant is raised in the rate equation
The order of reaction can be 0, 1,2 or 3
When the order of reaction of a reactant is 0, its concentration is ignored
The?overall order of reaction?is the sum of the powers of the reactants in a rate equation
For example, in the following rate equation, the reaction is:
Rate =?k?[NO2]2[H2]
Second-order with respect to NO
First-order with respect to H2
Third-order overall (2 + 1)
Half-life
The?half-life (t1/2)?is the time taken for the concentration of a?limiting reactant?to become half of its initial value
Rate-determining step & intermediates
The?rate-determining step?is the slowest step in a reaction
If a reactant appears in the?rate-determining step, then the concentration of that reactant will also appear in the?rate equation
For example, the rate equation for the reaction below is?rate?=?k?[CH3Br] [OH-]
CH3Br + OH-?→ CH3OH + Br-
This suggests that?both?CH3Br and OH-?take part in the?slow rate-determining step
This reaction is, therefore, a?bimolecular reaction
Unimolecular: one species involved in the rate-determining step
Bimolecular: two species involved in the rate-determining step
The?intermediate?is derived from substances that react together to form it in the rate-determining step
For example, for the reaction above the intermediate would consist of CH3Br and OH-
The intermediate is formed from the species that are involved in the rate-determining step (and thus appear in the rate equation)